9-56. See below:
a. See diagram below.

Front Right Top
b. 2
c. 24 and 96 ; ratio $=4$; It is the square of the linear scale factor.
d. 6 and 48 ; ratio $=8=2^{3}$. It is the cube of the linear scale factor.

9-57. See below.

a. Height of the tank $=6 \sqrt{3} \approx 10.4$ in, so $V=7 \cdot 13 \cdot 6 \sqrt{3}=546 \sqrt{3} \approx 945.7 \mathrm{in}^{3}$
b. $\frac{25 \text { fish }}{945.7 \text { in }^{3}} \approx \frac{0.026 \text { fish }}{1 \text { in }^{3}}$ or about 0.026 fish per cubic inch.
$\frac{25 \text { fish }}{945.7 \mathrm{in}^{3}} \cdot \frac{12 \text { inch }}{1 \text { foot }} \cdot \frac{12 \text { inch }}{1 \text { foot }} \cdot \frac{12 \text { inch }}{1 \text { foot }} \approx \frac{45.68 \text { fish }}{1 \mathrm{ft}^{3}}$
C.

9-58. See below:

a. False (isosceles trapezoid)
b. True
c. True
d. False (parallelogram)
$9-59.2(12 x+7)=30 x-4$, so $x=3$
a. $x=-2$
b. $x=5,-\frac{1}{2}$
c. $x=2$
d. $x=-2,3$

9-61. See below:
a. 0.85
b. $f(t)=27000(0.85)^{t}$
c. $\$ 11,980$

9-62. See below:
a. It is possible.
b. Not possible. Same-side interior angles should add up to 180°
c. Not possible. One pair of alternate interior angles are equal, but the other is not for the same pair of lines cut by a transversal; or, the vertical angles are not equal.

9-63. b and d

