7-54. See below.

a. $\quad x=8.5^{\circ}$
b. $x=11$
c. $x=14^{\circ}$

7-55. See below.

a. $\quad 360^{\circ} \div 72^{\circ}=5$ sides
b. $\quad 360^{\circ} \div 9=40^{\circ}$

7-56. ≈ 36.4 feet from the point on the street closest to the art museum.

7-57. See below.

a. $\quad a_{n}=20+20 n=40+20(n-1)$
b. $\quad a_{n}=6\left(\frac{1}{2}\right)^{n}=3\left(\frac{1}{2}\right)^{n-1}$

7-58. See below.

a. $\quad(0.7)(0.7)=0.49=49 \%$
b. $\quad(0.3)(0.7)=0.21=21 \%$

7-59. See below.

a. Similar (SSS ~)
b. \quad Congruent $(A S A \cong$ or $A A S \cong)$
c. Similar, because if the Pythagorean Theorem is used to solve for each unknown side, then 3 pairs of corresponding sides have a common ratio; thus, the triangles are similar by SSS ~.
d. Similar ($\mathrm{AA} \sim$) but not congruent since the two sides of length 12 are not corresponding.

7-60. Possible response: Rotate the second triangle 180° and then translate it to match the sides with the first triangle.

