

5-126. The third side is 12.2 units long. The angle opposite the side of length 10 is approximately 35.45°, while the angle opposite the side of length 17 is approximately 99.55°.

5-127. $x \approx 11.3$ units; Methods include using the Pythagorean Theorem to set up the equation $x^{2}+x^{2}=16^{2}$, using the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle shortcut to divide 16 by $\sqrt{2}$, or to use sine or cosine to solve using a trigonometric ratio.

5-128. No, because to be a rectangle, the parallelogram needs to have 4 right angles. Students can provide a counterexample of a parallelogram without 4 right angles.

5-129. See below.

a. $P \approx 40.32 \mathrm{~mm}, A=72$ sq. mm
b. $P=30$ feet, $A=36$ square feet

5-130. $A(2,4), B(6,2), C(4,5)$
5-131. The expected value per throw is $\frac{1}{4}(2)+\frac{1}{4}(3)+{ }^{\frac{1}{2}}(5)=\frac{15}{4}=3.75$, so her expected winnings over 3 games are $3(3.75)=11.25$; yes, she should win enough tickets to get the panda bear.

5-132. $\mathrm{y}=\frac{\frac{3}{4}}{} x+4$

5-133. See below.

a. $m \angle A B E=80^{\circ}, m \angle E B C=60^{\circ}, m \angle B C E=40^{\circ}, m \angle E C D=80^{\circ}, m \angle D E C$ $=40^{\circ}, m \angle C E B=80^{\circ}, m \angle B E A=60^{\circ}$,
b. 360°

5-134. See below.

a. $\approx 8.64 \mathrm{~cm}$
b. $P S=S R=5.27 \mathrm{~cm}$, so the perimeter is $\approx 25.5 \mathrm{~cm}$

5-135. Area ≈ 21.86 sq. units, perimeter ≈ 24.59 units

5-136. See below.
a. Explicit $t(n)=-2+3 n$; Recursive $t(0)=-2, t(n+1)=t(n)+3$
b. Explicit $t(n)=6\left({ }^{\frac{1}{2}}\right)^{n}$; Recursive $t(0)=6, t(n+1)=\frac{\frac{1}{2}}{} t(n)$
c. $t(n)=24-7 n$
d. $t(n)=5(1.2)^{n}$
e. $t(4)=1620$

5-137. See below.

a. See diagram below.

b. $x=\frac{10 \sqrt{3}}{3} \approx 5.77 \mathrm{ft}$

5-138. See below.

a. $5+\sqrt{20}+\sqrt{37} \approx 15.55$ units
b. ≈ 31.11
c. $(-2,0)$

