

5-126. The third side is 12.2 units long. The angle opposite the side of length 10 is approximately 35.45°, while the angle opposite the side of length 17 is approximately 99.55°.

5-127. $x \approx 11.3$ units; Methods include using the Pythagorean Theorem to set up the equation $x^2 + x^2 = 16^2$, using the 45°- 45°- 90° triangle shortcut to divide 16 by $\sqrt{2}$, or to use sine or cosine to solve using a trigonometric ratio.

5-128. No, because to be a rectangle, the parallelogram needs to have 4 right angles. Students can provide a counterexample of a parallelogram without 4 right angles.

5-129. See below.

- a. $P \approx 40.32$ mm, A = 72 sq. mm
- b. P = 30 feet, A = 36 square feet

5-130. *A*(2, 4), *B*(6, 2), *C*(4, 5)

5-131. The expected value per throw is $\frac{1}{4}(2) + \frac{1}{4}(3) + \frac{1}{2}(5) = \frac{15}{4} = 3.75$, so her expected winnings over 3 games are 3(3.75) = 11.25; yes, she should win enough tickets to get the panda bear.

5-132.
$$y = \frac{3}{4}x + 4$$

5-133. See below.

- a. $m \angle ABE = 80^\circ, m \angle EBC = 60^\circ, m \angle BCE = 40^\circ, m \angle ECD = 80^\circ, m \angle DEC = 40^\circ, m \angle CEB = 80^\circ, m \angle BEA = 60^\circ,$
- b. 360°

5-134. See below.

a. ≈ 8.64 cm

b. PS = SR = 5.27 cm, so the perimeter is ≈ 25.5 cm

5-135. Area \approx 21.86 sq. units, perimeter \approx 24.59 units

5-136. See below.

- a. Explicit t(n) = -2 + 3n; Recursive t(0) = -2, t(n + 1) = t(n) + 3
- b. Explicit $t(n) = 6(\frac{1}{2})^n$; Recursive t(0) = 6, $t(n + 1) = \frac{1}{2}t(n)$
- c. t(n) = 24 7n
- d. $t(n) = 5(1.2)^n$
- e. t(4) = 1620

5-137. See below.

a. See diagram below.

5-138. See below.

a.
$$5+\sqrt{20}+\sqrt{37} \approx 15.55$$
 units
b. ≈ 31.11
c. $(-2, 0)$