5-17. See below.

a.
$$\sin 22^\circ = \frac{x}{17}, x \approx 6.37$$

b.
$$\tan 49^{\circ} = \frac{7}{x}, x \approx 6.09$$

c.
$$\cos 60^{\circ} = \frac{x}{6}$$
, $x = 3$

5-18. ≈ 26.92 feet

5-19. See below.

a. G;
$$a_n = 100(\frac{1}{10})^{n-1} = 10^{3-n}$$

b. A;
$$a_n = 0 - 50(n - 1) = 50 - 50n$$

5-20. Region A is $\frac{1}{4}$ of the circle. Since the spinners are independent, the probability of A and A is $\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$. In 80 games, we expect A and A to occur $\frac{1}{16}(80) = 5$ times.

5-21. See below.

- a. False (a 30°- 60°- 90° triangle is a counterexample)
- b. False (this is only true for rectangles and parallelograms)
- c. True

5-22. See below.

a.
$$6x^2 - x - 2$$

b.
$$6x^3 - x^2 - 12x - 5$$

c.
$$-3xy + 3y^2 + 8x - 8y$$

d.
$$x^2 - 9y^2$$

5-23. $\triangle ABC \sim \triangle EFD$ by SAS~