Long Division w/ Polynomials

Use this guide to help you with the process of dividing a linear expression into a polynomial with a higher degree. We will utilize the [**Divide – Distribute – Subtract – Drop**] technique. Given $f(x) = x^3 + 3x^2 - 10x - 24$; f(-2) = 0

- Go through our factoring strategies first. Look for GCF's, # of terms, check to see if we can factor in another way before we take the polynomial long division route.
- Given f(-2) = 0, we write this as a linear expression and we know (x + 2) is a factor of the polynomial.

$(x+2)x^3+3x^2-10x-24$	Step 1 : Make sure the polynomial is written in standard form (exponents are in descending order). If any terms are missing, use a zero to fill in the missing term (this will help with the spacing). In this case, the problem is ready as is.
$\frac{x^2}{x+2)x^3+3x^2-10x-24}$	Step 2 : <u>Divide</u> the term with the highest power inside the division symbol by the term with the highest power outside the division symbol. In this case, we have x^3 divided by x which is x^2 .
$x+2)\frac{x^{2}}{x^{3}+3x^{2}-10x-24}$ $-(x^{3}+2x^{2})$	Step 3 : <u>Distribute</u> (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply x^2 and $x + 2$.
$ \frac{x^{2}}{x+2)x^{3}+3x^{2}-10x-24} \\ \frac{-(x^{3}+2x^{2})}{1x^{2}-10x} $	Step 4 : <u>Subtract</u> and <u>drop</u> down the next term.
$\frac{x^{2} + x}{x + 2 x^{3} + 3x^{2} - 10x - 24}$ $\frac{-(x^{3} + 2x^{2})}{1x^{2} - 10x}$	Step 5 : <u>Divide</u> the term with the highest power after the subtraction by the term with the highest power outside the division symbol. In this case, we have $1x^2$ divided by x which is x.

$\frac{x^{2} + x}{x + 2 x^{3} + 3x^{2} - 10x - 24}$ $\frac{-(x^{3} + 2x^{2})}{1x^{2} - 10x}$ $\frac{-(1x^{2} + 2x)}{1x^{2} - 10x}$	Step 6 : <u>Distribute</u> (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply x and x + 2.
$\frac{x^{2} + x}{x + 2 x^{3} + 3x^{2} - 10x - 24}$ $\frac{-(x^{3} + 2x^{2})}{1x^{2} - 10x}$ $\frac{-(1x^{2} + 2x)}{-12x - 24}$	Step 7 : <u>Subtract</u> and <u>drop</u> down the next term.
$ \frac{x^{2} + x - 12}{x + 2)x^{3} + 3x^{2} - 10x - 24} \\ - \frac{(x^{3} + 2x^{2})}{1x^{2} - 10x} \\ - \frac{(1x^{2} + 2x)}{-12x - 24} $	Step 8 : <u>Divide</u> the term with the highest power after the subtraction by the term with the highest power outside the division symbol. In this case, we have -12x divided by x which is -12.
$ \frac{x^{2} + x - 12}{x + 2 \sqrt{x^{3} + 3x^{2} - 10x - 24}} \\ - \frac{(x^{3} + 2x^{2})}{1x^{2} - 10x} \\ - \frac{(1x^{2} + 2x)}{-12x - 24} \\ - \frac{(12x - 24)}{0} $	 Step 9: <u>Distribute</u> (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply -12 and x + 2. Step 10: <u>Subtract</u> and notice a remainder of zero and there are no more terms to <u>drop</u> down.

We now have $x^3 + 3x^2 - 10x - 24 = (x + 2)(x^2 + x - 12)$. Since the remaining polynomial is a quadratic with 3 terms, we can factor and find the linear factors (not always possible).

$$x^{3} + 3x^{2} - 10x - 24 = (x + 2)(x^{2} + x - 12) = (x + 2)(x - 3)(x + 4).$$