Long Division w/ Polynomials

Use this guide to help you with the process of dividing a linear expression into a polynomial with a higher degree. We will utilize the [Divide - Distribute - Subtract - Drop] technique.
Given $f(x)=x^{3}+3 x^{2}-10 x-24 ; f(-2)=0$

- Go through our factoring strategies first. Look for GCF's, \# of terms, check to see if we can factor in another way before we take the polynomial long division route.
- Given $f(-2)=0$, we write this as a linear expression and we know $(x+2)$ is a factor of the polynomial.

$x + 2 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 }$	Step 1: Make sure the polynomial is written in standard form (exponents are in descending order). If any terms are missing, use a zero to fill in the missing term (this will help with the spacing). In this case, the problem is ready as is.
$\frac{x^{2}}{x + 2 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 }}$	Step 2: Divide the term with the highest power inside the division symbol by the term with the highest power outside the division symbol. In this case, we have x^{3} divided by x which is x^{2}.
$\begin{aligned} & x + 2 \longdiv { x ^ { 2 } } \\ & \quad-\left(x^{3}+2 x^{2}\right) \end{aligned}$	Step 3: Distribute (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply x^{2} and $x+2$.
$\begin{aligned} & \frac{x^{2}}{x + 2 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 }} \\ & \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \end{aligned}$	Step 4: Subtract and drop down the next term.
$\begin{gathered} x + 2 \longdiv { x ^ { 2 } + x } x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 \\ \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \end{gathered}$	Step 5: Divide the term with the highest power after the subtraction by the term with the highest power outside the division symbol. In this case, we have $1 x^{2}$ divided by x which is x.

$\begin{gathered} x + 2 \longdiv { x ^ { 2 } + x } x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 \\ \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \\ \frac{-\left(1 x^{2}+2 x\right)}{} \end{gathered}$	Step 6: Distribute (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply x and $\mathrm{x}+2$.
$\begin{gathered} x + 2 \longdiv { x ^ { 2 } + x } x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 \\ \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \\ \frac{-\left(1 x^{2}+2 x\right)}{-12 x-24} \end{gathered}$	Step 7: $\underline{\text { Subtract }}$ and drop down the next term.
$\begin{gathered} x + 2 \longdiv { x ^ { 2 } + x - 1 2 } x ^ { 3 } + 3 x ^ { 2 } - 1 0 x - 2 4 \\ \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \\ \frac{-\left(1 x^{2}+2 x\right)}{-12 x-24} \end{gathered}$	Step 8: Divide the term with the highest power after the subtraction by the term with the highest power outside the division symbol. In this case, we have $-12 x$ divided by x which is -12 .
$\begin{aligned} & \frac{x^{2}+x-12}{x+2} x^{3}+3 x^{2}-10 x-24 \\ & \frac{-\left(x^{3}+2 x^{2}\right)}{1 x^{2}-10 x} \\ & \frac{-\left(1 x^{2}+2 x\right)}{-12 x-24} \\ & \frac{-(12 x-24)}{0} \end{aligned}$	Step 9: Distribute (or multiply) the answer obtained in the previous step by the polynomial in front of the division symbol. In this case, we need to multiply - 12 and $\mathrm{x}+2$. Step 10: Subtract and notice a remainder of zero and there are no more terms to drop down.

We now have $x^{3}+3 x^{2}-10 x-24=(x+2)\left(x^{2}+x-12\right)$.
Since the remaining polynomial is a quadratic with 3 terms, we can factor and find the linear factors (not always possible).
$x^{3}+3 x^{2}-10 x-24=(x+2)\left(x^{2}+x-12\right)=(\boldsymbol{x}+2)(\boldsymbol{x}-\mathbf{3})(\boldsymbol{x}+\mathbf{4})$.

