1.2 Interval Notation for Domain and Range

Name \qquad
From your experiences in Algebra $1 \& 2$, you know how to read a number line and an Inequality. Look at the two examples provided and see if you can carry that into Interval Notation. Discuss the examples as a team and then complete the first four together. Complete the remaining problems on your own and then compare with your team.

	Inequality	Interval Notation	Graph
Ex.	$-3 \leq x<5$	$[-3,5)$	$\left\langle\begin{array}{ccccccccccll}1 & & & & \\ 4 & -3 & -2 & -1 & 0 & 1 & \\ \hline\end{array}\right.$
Ex.	$x>2$	$(2, \infty)$	
1.	$x \leq 3$		
2.		$(-\infty, 4)$	
3.			
4.		$[5, \infty)$	
5.			
6.	$x<1$ or $x \geq 5$		
7.			
8.	x is any real \#		
9.			
10.		$(1,4)$	
11.	$x>7$		
12.		[-2, 2]	

13. Summarize the use of (vs [for Interval Notation. When do we use each one?
14. Practice what you know about families of functions, transformations, and interval notation to graph each of the following; also state the domain and range..
a)

$$
y=-2|x-4|+1
$$

D:
R:
c) $f(x)=(x-6)^{3}+1$

D:
R:
e) $\quad h(x)=\frac{1}{x+2}-3$

D:
R:
b)

$$
y=\frac{1}{2}(x+4)^{2}+3
$$

D:
R:
d) $g(x)=\sqrt{x+3}-5$

D:
R:
f) $m(x)=4 \sqrt[3]{(x-2)}+4$

D:
R:
15. Which families of functions have a domain that is "All Reals" and which functions have a domain restriction? Do you think that this is true for all examples in these families?

EX 1: Another use of interval notation is to describe the parts of the domain where the " y-values" are increasing, constant or decreasing.

y-values are:
Decreasing: on the x -values $[-5,-2] \cup(0,2]$
Constant: on the x -values $(-2,0]$
Increasing: on the x -values $(2, \infty)$

EX2: This second example uses a shorter way to write it out.
Use interval notation to write the interval(s) over which $f(x)$ is increasing, decreasing, and constant.

Increasing:
$(-\infty,-2] \cup(2, \infty)$

Decreasing:

$(0,2]$

Constant:
(-2, 0]
16. Given the graph of $f(x)$ below find:

On what intervals of x is $f(x)$ increasing?
On what intervals of x is $f(x)$ positive?

17.

Given the graph of $f(x)$ below find:
On what intervals of x is $f(x)$ decreasing?
On what intervals of x is $f(x)$ positive?

18. Given the graph of $f(x)$ below find:

On what intervals of x is $f(x)$ constant? On what intervals of x is $f(x)$ negative?

